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Abstract 

We define a regularised version of the de Rham operator over the free loop space. We 
perform a semi-classical approximation of it, such that the index of the limit operator is 
equal to the "orbit Euler characteristic" of physicists. 
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O. Introduction 

In the physics of string theory, one considers string propagation on a manifold 
M quotiented by a finite group of symmetries G. When the group action is not 
free, the quotient space M/G is in general not a smooth manifold, but one with 
singularities, a so-called developable orbifold. In the discussion of string vacua 
for M/G, one has to consider the configuration of the closed (parametrised) loops 
of M together with all the loops twisted by elements of G. By consideration of 
modular invariance of the theory, Dixon, Harvey, Vafa and Witten [DHVW] 
introduced the following "orbifold Euler characteristic" of the quotient of M by 
G as the appropriate Euler number for the purpose of string theory: 

1 z(M(g,h > it(M, G)= ~-~ ~., ), (O.l) 
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where the summation runs over all commuting pairs in G × G, and M (g,h) denotes 
the common fixed point set of  g and h. For a free action it is a well known fact 
that x(M, G)=z(M/G).  The connection of this expression with the representa- 
tion theory of the group G leads to the identification ofx(M,  G) with the Euler 
characteristic of  equivariant K-theory Kc(M), which was noted in [AS]. How- 
ever, the string calculation of the Euler number is expected to agree with the Euler 
number of a "correct" resolution M/G ° of the singular space M/G, at least for 
manifolds with SU ( n )-holonomy. For dimc M =  2, [ HH ] showed that the equality 

x(M, G ) =x(M/G ° ) ,  (0.2) 

holds for M/G ° the minimal resolution of M/G. When dirnc M =  3 and G abelian, 
x(M, G) is also identified with x(M/G °) for M/G ° being the "minimal" toroidal 
resolution of M/G constructed by the methods in toric geometry in [RY, R ], and 
also in [ MOP ]. It seems that this phenomenon should hold for a general reason- 
able class. Even though the formula of the orbifold Euler characteristic was ob- 
tained by stringists using physicists' ideas, which is quite natural, it is in some 
sense unsatisfactory because a clearer mathematical nature of "strings" still relies 
on a rigorous mathematical description of the intuition behind it. Here we pro- 
pose a mathematical treatment using a probabilistic method based on Malliavin 
Calculus, which can justify some intuitive and heuristic methods of the physical 
arguments. The formulation might shed some light on the "string" nature oftoric 
geometry, which has been a useful device in the study of string compactification. 

In order to give an interpretation to these ideas, we need to consider an element 
of  volume over the twisted loop space, and unfortunately we meet the problem 
that there is no Riemannian measure over the loop space of an orbifold. The idea 
is to use the twisted B-H-K measure, which extends in the case of twisted loop 
space the measure which was introduced in [Bi5 ] in order to explain the relation 
between the cohomology of  the loop space and the index theory (see [HK] in the 
fiat case). In the case of non-twisted loop this measure is used in [JL1 ] in order 
to do a L p theory of Chen forms. But no differential operation is given in [JL1 ]. 

Such differential operations have been known for a long time in MaUiavin Cal- 
culus for the Wiener measure: these are the Malliavin derivatives [Grl ] and the 
Ornstein-Uhlenbeck operator [ Me ]. [ Sh ] and [ArM ] study differential forms 
over the Wiener space and the exterior derivative. [Ar 1, Ar2 ] do an extensive 
study of the index of  the Dirac operator over the fiat loop space in the case of the 
free field or with interacting terms: they give a path integral representation of the 
index of such operators over the loop, strongly inspired by the work of Hoegh- 
Krohn in the scalar case [ HK ] (see [ JLW 1, JLW2 ] for physics references ). 

For the analysis in infinite dimensional curved spaces, there exist different types 
of theory (we refer to [Ma] for a survey). 
- The theory of Wiener manifolds. The reader can see Ramer's thesis [Ra] for 
the non-scalar case. 
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- The analysis over infinite dimensional manifolds, which was used by the Rus- 
sian school. The manifold's structure is very important in such cases [ BS, DF ]. 
- T h e  quasi-sure analysis [Ge, Aml ], which works over finite codimensional 
manifolds of the Wiener space (see [ K ] for forms ). 
- The analysis over loop groups [AM2, Gr2, Gr3 ], which is closer to the purpose 
of this paper, but with a different tangent space, which uses deeply the structure 
of the group. For the moment there is no manifold structure in this theory nor in 
the next theory. 

The present paper is more related to [Le4] and [Le5 ], where the case of the 
free loop space of the Riemannian manifold is considered. Some connections are 
introduced over the free loop space, integration by parts is done, which allows us 
to define Malliavin's derivatives of every order and to define an Ornstein-Uhl- 
enbeck operator invariant by rotation. 

[JL2 ] defined a non-equivariant regularised exterior derivative over the full 
space of forms of the loop space. Its adjoint is computed. A rigorous conjecture 
for the index of the regularised de Rham operator is given. By localisation, it is 
the Euler-Poincar6 number of the manifold. The situation becomes more com- 
plicated for the case of the equivariant Dirac operator over the loop space with 
the relation with the Witten genus and for the case of the equivariant signature 
operator over the loop space with the relation with the elliptic genus: some topo- 
logical obstructions are met [Be, Se, Wi ] and in fact in [JL2 ] there is an exten- 
sion of the Taubes construction of the Dirac operator over an infinitesimally small 
loop [T ] only over a small neighbourhood, by using stochastic calculus. In order 
to define the "restriction" to these non-scalar operators to an infinitesimally small 
loop (that means over the family of Brownian bridges over the set of  tangent 
spaces), the B-H-K measure in small time is introduced and some limit theorems 
are used, which correspond to the high temperature limit in the stochastic context 
and which belong to the domain of the computations done in [Bi3, IW, Hs, Le2 ]. 

The purpose of this paper is to do analogous computations for the regularised 
exterior derivative for twisted loop spaces: the loop space of a developable orbi- 
fold appears namely as an orbifold of twisted loops. A scalar calculus over each 
sector of twisted loop is done. A diffusion process is constructed, and some rough 
localisation is performed for the diffusion process (see [ALR ] for non-twisted 
loops). The big difference with [JL2] is that the limit model is related to the 
computation of [Bi4] instead of the model of  [Bi3], because the twisted loop 
concentrates on the loop of the fixed point of an element of G in small time. 

1. Scalar  calculus  over twis ted  loop spaces  

1. I. Integration by parts for distinguished vector fields 

Let M be a compact Riemannian manifold and let G be a finite group acting 
over M. By averaging, we can suppose that G is a group of isometries. Let L be 
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the Laplace-Beltrami operator over M and pt(x, y) the associated heat kernel. 
Pl,x,y is the law of the Brownian bridge starting from x and going to y in time 1. 
Let Hg be the space of  twisted loops going from any x and arriving in gx at time 
1. Let ag be the measure over Hg, 

Pl,x~x dx ( 1.1 ) 
dltg =p~ (x, gx) fMPl (X, gx) dx" 

We denote the associated space o fL  2 functions by Hg. Let Xg be the vector field: 

zt (Xo(7(O))+  S h(s) ds-tXo(7(O) )+tTF' dgXo(7(O) ))  
[o,t] 

=ztH(t) . (1.2) 

h(s) is equal to Y~hi(s)X~(7(O)), where each hi is deterministic such that 
f to,~j h~ (s) ds = 0. These vector fields play the role of the distinguished vector fields 
given in [Le4] and in [Le5]. But the boundary conditions are now 
X( 1 ) =  dg X(0)  because we look at twisted loops. Let F be a smooth cylindrical 
functional F(7( t( 1 ) ), ..., 7( t( r) ) ). We have: 

Theorem 1.1. 

ltg[ ( dF, Xg ) ] = l.tg [ F div Xg ] , (1.3) 

where 

(dF,  Xg) = ~ (dr(t( i ))F(7(t(1)) , . . . ,7( t(r))) ,Xg(t( i )))  (1.4) 

divXg=divXg, o(7(O))+ (z,H'(s),~57(s))+ ~ (Sx~s),¢57(s)) 
[0,1] [0,1] 

- .I Trszs~R(dT(s)'zs)ZszF1 dgXg, o (7 (0 ) ) ,  (1.5) 
[0,1] 

where S is the Ricci tensor over M and R the curvature tensor. 

Remark. Let us remark that the last term in the divergence can be computed by 
means of the Ricci tensor and is equal to zero when the manifold is Ricci flat. 

Proof. The proof is very similar to the proof of [ Le4 ]. We begin to work over the 
path space, that means the space of applications from [ 0, 1 ] into M endowed 
with the path space measure dx P]~, where P~ denotes the law of the open Brown- 
ian motion at time 1 starting from x. Let q~ be a smooth function over M × M w i t h  
a small support over the diagonal equal to 1 over a small neighbourhood of the 
diagonal such that g7(0) and 7( 1 ) are joined by a unique geodesic if O(gT(0), 
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?( 1 )) is not equal to O. Let us denote by z(7( 1 ), gy(O)) the parallel transport 
from g(7(O) ) to ?( 1 ) along this geodesic. We begin by enlarging the vector field 
Xg over the twisted loop space into a vector field Xt. over the path space by putting: 

Xl,g(t ) =q$(g~(O), ~'(1 ) ) zt(Xo(~(O) ) "~- f h(s) ds- tXo(y(O))  
[0,tl 

+ tzi- ~ r(~,( 1 ), gT(0) ) d g  Xo ( 7 ( 0 ) ) ) .  (1.6) 

Let N be  a subdivision of [0, 1 ], and let X ~  be the associated vector field and let 
us consider the polygonal approximation of ~,: this polygonal approximation of 
works only if 7(t(i) ) and ? ( t ( i +  1 ) ) are close, but the contribution of the path 
where ~,(t(i) ) and 7(t(i+ I ) ) are far goes to 0 when Ngoes to infinity, as is ex- 
plained in [Le4, Le5 ]. We know by integrating by parts in finite dimensions that 

V[ (dE ,  N [Fd iv  N Xl,g] ( 1.7 ) Xl,g > ] = V 

Moreover, by using the Malliavin Calculus, we know that for all x, y 

El,x,y[ ( d E ,  N X+,g > ] --~ El,x,y[ ( dE, Xl,g > ] , ( 1.8 ) 

and that 

E,.x.y[Fdiv X~] --~E,,x,y [Fd iv  Xt.g] , ( 1.9 ) 

where the divergence is computed from ( 1.5 ) by taking the derivative of O ( r (~,( 1 ), 
gg'(0) ) in addition because we are integrating by parts over the path space. By 
using the fact that g is an isometry, and the relation N Xl,g( 1 ) = dgX/N~(0), we ar- 
rive at the same cancellation in the end when N goes to infinity as the cancella- 
tions registered for non-twisted loops. The only difference is that we do not need 
to take the derivative of r(~,( 1 ), gy(0) ) in the approximation limit procedure, 
hence the theorem, by considering the matrix from Ty(o) into Tr(0~ by zi -~ dg 
instead of r i-' in the ease of non-twisted loops. But dg (~,(0)) has a derivative 
equal to 0 over a vector field zttX; this explains the fact that no derivative of dg 
appears in the last counterterm. [] 

1.2. Dirichlet form and Ornstein- Uhlenbeck operator 

The tangent space is the space of vectors X(s)= zff-I(s) with H(s) with finite 
variations such that Xl = dgXo. As Hilbert structure, it should be possible to choose 
the Hilbert structure 

HX(O)H2+ J" <DX(s),DX(s)) ds, 
[0,1] 
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where DX(s)  = zJ-/' (s) is the covariant derivative over the loop. But we will split 
our tangent space Tr into Yz T~, an orthogonal sum with a different metric in 
order to simplify the computations. 

If n>0,  

n{ T r - "It.21/2 

Ifn<O, 

n _  { .21/2 Tr - zt 

I cos(ns) dse=X(n ,  e) ( t )} .  
[0 , t ]  

~ sin(ns) d s e = X ( n , e ) ( t ) } .  
[0 , t ]  

If n=0,  

T O = { z t ( e - t e + t z ?  1 dge) =X(O, e) ( t)}.  

The Hilbert structure over each piece T~ of Tr is given by Ilell 2 y ( o ) .  

There is a connection which preserves the metric. This arises from the Levi- 
Civita connection F over the manifold: 

X(n,  re )  (t) = r ( X ( n ,  e) (t) ) . (1.10) 

This connection preserves by definition the splitting of T~ into T ~. 
Let us introduce positive numbers A(n)  such A(n)  < CI n IP.2p< I. Let E' be 

the following Dirichlet form: 

E ' ( F , F ) =  ~ l tg[A2(n)(dF, X ( n , e ( i ) ) > 2 ] ,  (1.11) 
n,i,g 

where X(n,  e(i)  ) is a basis of T~. 

Lemma 1.2. E' is closed defined over a dense set which separates the twisted loop 
and tight. 

Proof. E' is densely defined. We choose as core A o the set of cylindrical functions 
F(y( t (  1 ) ), ..., y( t(r)  ) ). Over T~, n#0 ,  we choose as orthonormal basis the nat- 
ural orthonormal basis which comes from Ty(o). We have: 

I (dF, X ( n , e ( i )  ) > l <~C/(Inl + l ) . (1.12) 

Therefore: 

~ A ( n ) 2 ( d F ,  S(n,e(i))>2<<. ~ A ( n ) 2 / ( l n l + l ) 2 < ~ C ,  (1.13) 

with C deterministic. Therefore, E' is densely defined over a set of functions 
which separate the loop. 
- E' is closed. Let us suppose that Fp~0 for Fp belonging to the core and that: 
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ltg[~ A(n)2( ( dFp, X(n,e(i)  ) ) - G ( n )  )2] ~O , (1.14) 

when p--,oc. Then G, = 0. Namely for all cylindrical functionals F, 

ltg[ ( clFp, X( n, e( i) ) ) F] 

=/t~[Fp div X, F] -~g[Fp (dF, X(n, e(i) ) ) ] ,  (1.15) 

which tends to 0. Therefore (dFp, X( n, e (i) ) ) tends to 0 in L 2 (/ag) and therefore 
G , = 0  (we used local sections of the smooth orthonormal basis of  Ty(o)M). 
- E' is tight for uniform convergence. Let F(x, y) be a smooth function >t 0 over 
M ×  M such that F (x, y) = d z (x, y ) if x and y are closed. Let G ( ? ) be the random 
variable 

G(~,)= ~ ~ F(~,(s),~,(t))P/lt-sl"dsdt, (1.16) 
[o,l] [o31 

which is finite if p>  t~. Let us compute (dG(),),  X(n, e(i) ) ). It is enough to take 
n~0:  

I ( d G ( ~ , ) ,  X(n, e(i)  ) ) I 

< ~ f F(~,(s),~,(t))P-l/It-sl"l (d~(s)F(),(s),),(t)),X(n,e(i))(s)) 
[oA] [oA] 

+ <dr(t)F(?(s), ?(t) ), X(n, e(i) ) (t) > I dsdt 

C 
< - ~  f ~ F(7(s) ,7( t ) )p-1/ l t -s l"dsdt .  (1.17) 

[0,1 ] [0,1 ] 

Therefore, if p - 1 > or, f to, ~ if to, ~ l F ( ~ (s), ~, ( t ) )P- ~ / I t - s I" ds dt is finite. More- 
over, if we put ot = 1 + 2tip, G < C is compact iff l< 1/2 for the uniform norm (see 
[AV ] for the case of a Wiener submanifold). [] 

The following theorem can be deduced classically from the previous lemma. 

T h e o r e m  1.3. To the Dirichlet form is associated, outside a set of capacity O, a 
process wt ('t ) for #g. 

Let us consider the operator LA associated to the Dirichlet form. It has the 
definition: 

LAF= - ~ A ( n ) 2 ( d ( d F ,  X(n, e(i) ) ), X(n, e(i) ) ) 

+ ~A(n)2(dF,  X(n ,e ( i ) ) )  d ivX(n ,e ( i ) ) .  (1.18) 

T h e o r e m  1.4. LA is defined over the core A o if 4p < 1. 
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Proof Only the case n ~ 0 is important. 

I ( d ( d F ,  X(n, e(i) ) ), X(n, e(i) ) ) I (C(n) / (n  2+ 1 ) ,  (1.19) 

and the sequence of random variables C(n) is bounded in L z, this from the 
relation: 

FxZt=z, f z~-IR(dy(s),X(s) )z,, (1.20) 
[0,t] 

for the Levi-Civita connection F. So only the second part in the definition of LaF 
poses a problem. Let us consider only the n > 0 part: 

div X(n, e(i) )= 
[oAI 

(rs cos(ns) e( i), ~,(s) ) 

+½ ~ (Sx(~,e(i))(~),~(s))+counterterms. (1.21) 
[0,1] 

The counterterms have a behaviour in C(n )/n with C(n  ) uniformly bounded in 
L 2 (gg) and do not pose any problem. 

Let us consider the j th  part of the derivative o f F ( ? ( t (  1 ) ), ..., y( t ( r )  ) ). Let us 
consider the element of L 2 [0, 1 ] whose Fourier series is 0 if n < 0 and (A (n)2/  
n ) (sin (nt ( j ) )  - 1 ). Denote it by hto)(s ). (The convergence is obtained because 
4p < 1. ) In the first contribution of the divergence in the operator, we recognise: 

( rs ( dr(to) )F(y( t( 1 ) ), ..., ?( t( r) ) ), "CtO" ) hto) ( s )e( i) ), O?( s ) ) , 
[O,l] 

(1.22) 

which belongs in L 2 (#g) because we recognise a non-anticipative It6 integral. 
[] 

Lemma 1.5. Let F be cylindrical functional. 

ltg[exp[ClLAFI l ] < o o ,  (1.23) 

for all C if  4p < 1. 

Proof The part in LAFwhich comes from ( 1.22 ) clearly satisfies ( 1.23 ). The part 
in LAF which comes from the first sum in ( 1.18 ) easily satisfies ( 1.22). Namely 
only the derivative of the parallel transport poses any difficulties, but these are 
overcome by (1.19) and by recognising a non-anticipative It6 integral as in (1.22). 
It remains to treat the contribution of the counterterms in ( 1.21 ). Let us study 
for instance the contribution of 

A(n )2 (dF ,  X(n, e( i ) ) )  J (Sx(~,e(i))(s), ~?(s)) 
n>O,i [0,1 ] 
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= Y~ ; (Syo~<., 8r(s) ) ,  
J [oA] 

79 

(1.24) 

where Y(j) is a process of the same type as ( 1.22). This non-anticipative integral 
is in particular exponentially integrable. The same holds for the last counterterm. 

1.3. Localisation 

We can now handle the following theorem, which could justify that the equi- 
variant Euler number under the geometrical action of h should be localised over 
the twisted loop in g of the fixed point of  h. 

Theorem 1.6. 

ltg[d(wt(Y), y) > 8] < exp [ - C/t] , 

when t is tending to O. 

(1.25) 

Proof. d is the uniform distance. Let us cut the time interval in t -  1 time intervals 
[s(i),  s(i+ 1 ) ] of  the same length. The event d(wt(y), Y) >8  is included in the 
union of the events {d(wt(y) (s(i)), y(s(i) ) ) > 8} =Oi and of the events 

{suptst/).sti+ l )1 d(wt(y) (s), wt(y) (s(i) ) ) > 8" } =0; .  

By the stationarity of the process: 

exp[-C/t]>~lZg{suptsti),~ti+~)l d(y(s),y(s(i)))>8"}>lltg{O~}. (1.26) 

Since the number of O~ is controlled by t-~, the second term is controlled by 
exp[ - C / t ]  when t-,0. Let us estimate lzg{Oi}. By covering M b y  a set of small 
balls, Oi can be included in a finite set of  O~j such that: 

Ocj = {I g~(wt(Y) (s(i)) ) -gj(y(s( i )  ) )l > 8"}. (1.27) 

The gj are independent of the si and 8" too. Since gj (y(s (i)) belongs to the do- 
main of LA, quasi-surely, we have: 

gj(wt(y(s(i) ) ) -gj (y(s( i )  ) )=M,+ ~ (LAgj)(w~(y) ) ds. (1.28) 
[0,t] 

Mt is a martingale whose derivative of the right bracket is smaller than C because 
we take a coordinate function. Therefore: 

/tg[ IM, I > C] <exp[  - C/t] .  (1.29) 

Moreover, by the Jensen inequality, 
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/Zg Iexp [[!t ] LAgj, (Ws()'))ds/t]l 

<C~.~g[! t exp[lLAgjl(ws(y))]ds/t?,  
[,1 

for the stationarity of ws (y). We deduce from this that 

ltg[!~ ILAgs(w, (y ) ) lds>C?<exp[-C/ t ] .  
[,1 

Therefore the result. 

(1.30) 

(1.31) 

2. Regularised Dixon-Harvey-Vafa-Witten Euler number from the loop space of 
a developable orbifold 

2.1. Regularised de Rham operator over the twisted loop space 

Let y be a twisted loop in Hg, and T~ be its tangent space with the previous 
Hilbert structure. Ty= Y~ T~, the sum being taken over the relative integers. Let 
.4 Ty be the exterior algebra associated to T~ with the structure coming from each 
T~. The connection F passes to A T r Let A° be the set of sections of the shape 

e= ~, Ft(y(t(O), y(t(O) ), ..., y(t(r) ) )X(I) (y) 

for a finite sum, where F~ is a cylindrical functional and where X~ =X(n~ ) (el) ^ 
• ..AX(n~)(er). Let us remark that A(Ty) is canonically isomorphic to 
A (yo) A ̀4 (yo, H), where A (yo, H) is the Fermionic Fock space associated to the 
L 2 Hilbert structure endowed with the flat Brownian bridge in the tangent space 
of the starting point. Modulo this isomorphism, we take random sections which 
have only a finite number of components which are not equal to zero in this bun- 
dle over M in order to define A ° and the coordinates are cylindrical functionals. 
For e belonging to A o, if e (i) is a local section of the orthonormal basis of Tyro)M, 
we define d ~  by 

drgtr=, ~ { (~)A(n)(dF,(y( t (O))  .... , y ( t ( r ) ) ) , X ( n , e ( i ) ) ( y ) )  

×X(n, e(i) ) (y) A X(I) (y) 

A ( O )F~(y( t( O ), ..., y(t(r) )X(O, e( i) ) ^ Fxto,et~) )ty)X( I) (y)}.  + 

(2.1) 
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The first sum is taken over the finite number I of  components FI of a in the dis- 
tinguished basis X(I)  (7) of  the exterior algebra ATy and the second is involved 
with the derivatives along the distinguished vector fields of the form. Since the 
connection F is a connection which preserves the metric over A Tr, we can write 
(2.1) more concisely: 

&,ga= Y" A(n)X(n, e(i) ) ^Fx(..e(i))a. 
i 

(2.2) 

The operator does not depend on the choice of the local smooth section of the 
orthonormal basis e(i) we choose. In a particular case, it can be useful to choose 
a normal system of coordinates in order to determine the operator. We can com- 
pute d~*g over Ag °. Namely, 

/tg[ (d<a ,  a' ) ,  X)  ] =fig[ <a, a ' )  divX] 

= ltg[ ( Fxa, a' ) + < a, Fxa' ) ] . (2.3) 

Therefore 

F*xa= - F x a +  adiv  X.  (2.4) 

This allows us to show that: 

d r , g - -  ~A(n)['xtn,eti))ix(n,e(i))tr+ ~ ix(, ,e(i))adivX(n,e(i))  (2.5) 

Let us recall (see [JL2] ) that the sum in (2.1) is infinite but converges because 
2p< 1 and that in d**a the sum is finite, dr,g+dr*,g is a symmetric operator and 
therefore closable, and dr** is closable too. 

Let us show that (dr, • 2 +dr,g) is defined over A °. For this we have to suppose 
4p< 1. We have: 

dr,gd,,ga- ~ A(n)X(n ,  e(i) ) A/"X(n,e(i)) 
(n,i) 

X {--  (re,j) ~ A(m)rx(m'eO))ix(m'eO))tr 

+ ~ A(m)ix(m,eo))adivX(m, e ( j ) ) } .  (2.6) 
(m,j) 

The sum in { } is in fact finite. We only have to show that if we take (dFt, X(n, 
e(i) ) ) ,  we can reach this from the core of cylindrical functionals because the 
parallel transport appears in such expressions. This comes from the Bismut for- 
mula [Bi2, Le4, Le5 ] 
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l'xZt=zt | z7 ~ R(dy~,X~)T~ (2.7) 
[O,tl 

and from the fact that 2p < 1. 
Let us now study the behaviour of d~gdr,ga. It equals 

A(n) div X(n,e(i) )iX(n,e(i)) {~  A(m)X(m,e(j) ) AFx, m,eo),a} 

-- E a(17)I"x(n,e(i))ix(n,e(i)){~ h(m)X(m,e( j ) )Al"x(m,eU))tT}.  (2 .8 )  

The sum is finite, except for the most embarassing term which is 

~A(n)2divX(n,e( i ) )FXtn ,e t i ) ) t r  - EA(n)2I"x(n,e(i))l"x(n,e(i))tT. (2.9) 

But if we work in a local chart, we can compare the problem of the convergence 
of this series to the problem of  the convergence of LA and show it is converging 
in L2 (/tg) as in the first part since 4p< 1. 

The sum in dr*gdr*ga is finite and does not pose any problem of convergence. 
The sum in dr,gdr,ga is infinite but its convergence comes from the fact that 

#g[I ( d  (dF, ,  X(n, e( i) ) ), X(m, e(j) ) ) 12 ] 

<~ C/(n2+ 1 ) (m2+ 1 ) ,  (2.10) 

using (2.7). 

Remark. Let to be the form over the twisted loop space which to a vector asso- 
ciates (og(y(s)) ,  As). It is the reciprocal image of the one-form co in M b y  the 
evaluation map which associates to a twist loop its value in time s. It belongs to 
the domain ofdr,g and dr*~. For this, we expand Xs in the basis given by T~ and 
we see that this form is the series 

(og(y(s)) ,  X(n, e(i) ) (s) )X(n, e(i) ). 

There is the parallel transport which appears in (og(y(s)) ,  X(n, e(i) ) (s)) but 
can be handled by formula (2.7), which allows us to show that this form belongs 
to the domain of dr.g and of d*~ because 2p < 1. 

The Laplacian • 2 (dr,g+dr,g) =Jr,g is densely defined and symmetric, therefore 
closable. 

Let us introduce the geometrical action h: to a twisted loop y(s) it associates 
the twisted loop hy(s). It is an isometry from Hg into Hhg h -1 which preserves the 
splitting of Tr into Y. T~. This comes from the fact that h is an isometry, and if Y 
is the Brownian bridge between x and gx, hy is the bridge between hx and 
hgx= (hgh-t)hx. Moreover the parallel transport between by(O) and by(t) is 
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nothing else than dh zt(dh) -x since h is an isometry. Therefore the isometry be- 
tween T~ and T~v is given by e - ,dh  e. The most difficult part to see this is for a 
vector field of the type z t ( e - t e +  tz 7 ~ dg e). It is transformed in a vector of the 
type 

z , ( h ~ ' ) ( d h e - t d h e + t d h z ~  ~ dge)  

= z,(h?) (dh e -  tdh  e + t  dh Z l  L ( d h ) -  ldh dg ( d h ) -  ~ dh e) 

= zt(h?) (dh e - t d h  e + t ( d h  Zl dh -~ ) - l d ( h g h  -1 ) dh e ) .  (2.11 ) 

The conclusion follows from dh zl dh - 1 =  z~ (h?). 
Moreover, h lifts to an application from A o to A Ogh-l, which is an isometry for 

the natural L 2 structure over these two spaces. Since h preserves the splitting of 
Ty into the sum of T ~ , since the A ( n ) are independent o f  the chosen starting point, 
and since h preserves the Levi-Civita connection over TM, we deduce the follow- 
ing equalities of  operators with their domain: 

hdr,g = d~,hgh - , h ,  

hd~,g - d r,hgh - ' h ,  

h (d~,g + dr*g) = (d~,hgh-, + dr*hgh-' ) h ,  

hdr,g = Ar,  h g h -  I h .  (2.12 ) 

The Hilbert space of the loop space of a developable orbifold can be identified 
with the quotient of the union of the sectors Hg by the geometrical action of G 
over the union of Hg. Therefore, formally, the Euler-Poincar6 characteristic 
of  this orbifold of twisted loop space is given by ( 1 / [ G I ) ×  
Z Trs(exp [ - t A  ] h), the sum being taken over the elements of the group and the 
expression Trs being the difference of the trace over positive forms and 
of that over odd forms [HZ]. This quantity is formally equal to 
( I / [G[  )Z Indh (dr +dr*). 

But A preserves each fermionic sector, and so only the contribution of the sec- 
tors which are kept by the geometrical action of h need to be taken in the equi- 
variant index (it is the diagonal contribution of h). A sector is kept by h i fgh = hg. 
So only the sum over commuting pairs (g, h) has to be taken in the Hirzebruch 
formula. 

We can now handle the following conjecture: 

C o n j e c t u r e .  I fA(n)  > In[ p 
-- dr,g@ dr*g has a self-adjoint extension. 
- If g and h commute, g(Mg c~ M h) = Indh (dr,g + d~g). 
- tr exp [ - tAr,g ] h is finite and Indh (dr,g + d~g) = Trs exp [ - tAr,g ] h. 

This conjecture could show that the regularised Euler number of the loop space 
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of a developable compact orbifold is given by that of Dixon-Harvey-Vafa-Wit- 
ten, Eq. (0.1), given in Section O. 

2.2. A heuristic proof of the conjecture 

Over Hg, instead of putting the measure 

1 
fMp, (x, gx) dx p' (x, gx)t' ,x.x dx= 

we choose the measure in small time 

1 
fM p~2 (X, gx) dx p~2 (x, gx)P~2,x,ex dx= lt~, e . 

When e is small this measure concentrates to the fixed point M g of g because 
p,2(x, gx) ~<exp[ - C / e  2 ] when x ¢ g x  (see [Bi4] ). As in [JL2], we divide the 
metric in T~, n ¢ 0, by e -  2 such that an original orthonormal basis is multiplied 
by e, although it is kept as a form (see [Bi7] and [Le3] ). The contribution of 
T o is more complicated to handle, because there are two parts in T°: the part 
which is transverse to the fixed point set and the part which is tangent to the fixed 
point set. Of course this distinction works only if y(0) is close to the fixed point 
set. If y (0) is close to the fixed point set, we can define the projection lly (0) over 
the fixed point set and the parallel transport T (y (0), Fly (0) ) from/-/7 (0) to ~ (0). 
Over M e, we have the tangent bundle TM g and its orthogonal bundle (TMg) H, 
which are parallel because M e is totally geodesic. We use the parallel transport 
v(x, Ilx) in order to get a bundle TeAI and a bundle TgM H over a small tubular 
neighbourhood of the fixed point set M e. Moreover, TgM and TgM H are orthog- 
onal. If y(0) is in the small neighbourhood of the fixed point set, we can split 
T o in T o (TeM) and T o (TgMH). This decomposition is orthogonal. We keep the 
Hilbert structure in T°(TeM) and in T°(TeMH), we take the Hilbert structure 
as a ( ( 1 - ez ) f ( (7 (0) ) /¢2)  + 1 ) = f  (y (0) )  multiple of the Hilbert structure from 
the previous part; moreove r f (y (0 )  ) is smooth/> 0, depends only on the distance 
between the starting point and the fixed point set M e, and is equal to 0 outside a 
small tubular neighbourhood Ut of the fixed point set and is equal to 1 inside a 
smaller tubular neighbourhood U2 of the fixed point set. For the limit theorem 
we will give later, only the contribution of a small neighbourhood of the fixed 
point will be significant: an orthonormal basis of  T°(TgM) is the same and an 
orthonormal basis of  T°(TeM H) is rescaled by ¢. We will not write later all the 
details which come from the fact that this rescaling is only true in fact over a small 
tubular neighbourhood of M e, by doing a suitable partition of unity associated to 
a neighbourhood of the fixed point set invariant under the geometrical action of 
h. 

These definitions being given, we define the operator d,.r,g, the operator dc*r,e, 
the symmetric operator d~,r,e + d~*,r, e and the operator . 2 (d~,r,g +d~,r.) =A~,r,g as be- 
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fore. Moreover, since we choose f , (x )  depending only on the distance from x to 
M g, and since that distance is invariant under the action of h, because h and g 
commute, all these operators can be chosen invariant under the action of h: the 
main difficulty is to show that the splitting into TgM and TgM H is invariant under 
the action of h. But since h and g commute, h keeps M g and therefore dh keeps 
the decomposition over M g of TM in T M  g and (TMg) H. Moreover 
Hh~,(O ) = hH~,(O ) always because h and g commute. Moreover, let eo be a section 
of T M  g. z(~,(0), H~,(0) )eo(H?(0) ) is a section of TgM. We have: 

dh z,{(1 -t)z(~,(O),  Hr(O))eo (H?(O)) 

+tz i - '  dgz(7(0) ,  H(~,(0))eo(H~,(0)} 

= zt(hT){ (1 - t )  dh z(?(0),  H),(0) )eo (HT(0)) 

+ t d h  z~-' ( d h ) - ' d ( h g h  -1 ) dh ~(~(0), H?(0) ) ( d h ) -  ' dh eo (H~,(0) } 

= T, (hr)  { ( 1 - t )  T(h~(0), Hh7(O) ) dh co(fir(O) ) 

+ t(T1 (h~,)) -1 dg z(h~,(O), Hh~,(O) ) dh eo (H~,(0))},  (2.13 ) 

and dh eo (Hy(0) ) is a vector in Hh?(O ) tangent to M g. This shows that our split- 
ting is kept near M g. 

We follow the line of [JL2] in order to define the Bismut dilatation. We have 
our basis of  distinguished vector fields X(n, e ( i ) )  for a local smooth section e(i)  
of  orthonormal basis. Moreover, over our little neighbourhood of the fixed point 
set, we choose that local section with respect to the splitting of T M  in TgM and 
TsM n. We deduce from this an orthonormal basis X(I)  of  the fibre of differential 
forms. Moreover this choice is invariant under the action of h, because h keeps 
the splitting. Let us choose the coordinate of X(I) .  If d(7(0) ,  M g) is small, we 
take any finite sum of products of the type 

f(H)'(O) ) 1-I ~ ( ? ( t ( i )  ) - f ( H ~ ( O )  ) ) = F .  
l(n) 

I (n  ) is a finite part of  cardinal n of [0, 1 ]. Moreover, all the I (n)  with the same 
cardinal are distinct. Moreover, if I (n  ) = t ( 1 ) < t (2)... < t (n),  we suppose that 
the union of all the I (n )  for n fixed is dense in the simplex t( 1 ) <t(2 ) . . .< t (n )  
of [0, 1 ]". If F is such a functional, F(hT) is still such a functional because 
h (H~,(0)) = H(h~,(0) ), which shows us that the choice of such test functionals is 
invariant under the action of h, if d(7(0) ,  M g) is small. If d(~,(0), M g) is large, 
we take any cylindrical functional. (We do not write completely the details about 
this, but we stick together the two components by using as test functionals 
h(?(0)  )F(~,) + ( 1 - h ( 7 ( 0 )  ) )G(~,), where h is a smooth function with compact 
support in a small neighbourhood invariant under the action of h and equal to 1 
in a smaller neighbourhood invariant under the action of h. We perform the Bis- 
mut dilatation only over the first component. ) Let us suppose that 
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E fo.,(nT(o) ) 1-I ff,,,(7(t,) ) - f , , (nT(o)  ) ) = o .  
I ! 

Since all the ! are distinct, we deduce that each fo,l(Hy(0 ) ) H ( f , i ( y ( t i ) ) -  
f , l (HT(0) ) ) is equal to 0. We can now define the Bismut dilatation over a func- 
tional F =  ~o jH( f , i ( y ( t , )  ) - f , i ( H y ( 0 )  ) ) by putting: 

B~F= E fo,i(/-/y(0) ) H ~,l(Y(t;) ) - f , l ( / - /?(0)  ) / e .  (2.14) 

If d(?(0), M g) is large, we do not change the functional. We have that key prop- 
erty, since Hh7 (0) = hl-l? (0): 

B~(F(hy) ) = (B~F) (hy) . (2.15) 

Let us show that the space of scalar functionals where the Bismut dilatation is 
defined is dense. This follows from: 

f(/-/7(0)) I-I ~ ( y ( t , ) ) - f ( l - l T ( O ) ) )  
l(n) 

- f ( I I7(O)  )fn(II7(O) ) 1--[ ~ ( y ( t ( i )  ) ) - f ( I I T ( O )  ) ) . (2.16) 
l ( n - - l )  

By induction over n, we suppose that each functional f(I17(O), 7( t (1) ) ,  ..., 
7 ( t ( n -  1 ) ) ) is the limit of  a sum of finite products with the cardinal of  I (k)  
smaller than n - 1 .  If we use this induction hypothesis, it results from (2.16) 
that we can get any functional of  the type f(I17(O), 7 ( t ( l ) ) ,  ..., 
7 ( t ( n -  1 ) ) )fn(7(t(n) ) ) in L2 (/~g), and therefore all the functionals which are in 
L 2 (#g) by the Stone-Weierstrass theorem. 

Let us define the Bismut dilatation for forms: we choose an orthonormal basis 
e;(II7(O) ) of TgM and an orthonormal basis e;(II7(O) ) of TgM H. We deduce a 
basis X(I )  of our fibre of differential forms. If we change the orthonormal basis 
ei(IIT(O) ), the change of basis X(I )  is seen only by terms which depend only on 
/-/7(0 ). If ,7= ZFIXI, let us define 

B~a= ~ (B~FI)X(I) .  (2.17) 

This definition is coherent from the remark before. If d(7(0) ,  M g) is large, 
there is no operation, and we stick in a smooth way these two operations, but it 
does not give difficulties, because when ¢ tends to 0, only the contribution of the 
small tubular neighbourhood o f M  e appears. 

We have still the basic property: 

B,(dh or) =dh  (B ,a ) .  (2.18) 

Let us now define the limit model, conformaUy to [ JL2 ] and [T ]. The proba- 
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bility space is defined as follows: 
- Over M g we take the bundle of  bridges in TM which go from c to dg c, c being 
in (TMg) n. Over M g, we put the Riemannian measure and over the set of  paths 
which go from c to dgc in time 1, we put the measure exp( -Jl (I-dg)cl] 2) dc® 
P~,c, dgc, which is the law of the Brownian bridges in TxM [and not in (TxMg) H ] 
which go from c to dg c. Let us recall that the Brownian bridges which go from c 
to dgc have the same law as the process ( 1 -s)c+sdgc+ys,nat,  which is a flat 
Brownian bridge starting from 0 and coming back to 0 in TxM in time 1. The 
introduction of  this model is motivated by [Bi4]. 

As tangent space of  the flat Brownian bridge Ys, flat, we take the space H of finite 
energy elements h of  TxM such that h ( 0 ) = h ( 1  ) = 0  with the Hilbert norm 
fto,~l Ilh' (s)I1~ ds. Over the set of  c, we take the Hilbert norm Ilcll 2 The fact that 
we use the Hilbert norm Ilcll 2 instead of  the norm II (I-dg)cl l  2, which seems more 
natural, comes from the fact that we use the Hilbert structure lie(i)II 2 over T~ ° for 
a vector field X(0, e( i )  ). Over an element of  that probability limit space, we get 
as fibre Ax ^ Ac A Zlfermioni c. The last exterior algebra is the fermionic Fock space 
associated to the fiat Brownian bridge starting from 0 in TxM. 

As limit operator, we choose: 

dx,g + dc,g + doo,g = dx,g + d2,t,g = d,,g 

= ~  A(O)e(i)  ^F~(i) + ~ A(O)c(i)  ^Fe~,) 

+ ~ A (n) (cos(ns)e( j ) )  ^ Fcos(n~)eo) 

+ ~ A (n ) ( s i n (n s ) e ( j ) )  AI"sin(ns)e(j ) . (2.19) 

In the first sum, we take derivatives over an orthonormal basis e(i) of TxM g 
(x belongs to Mg). In the second sum, we take derivatives over an orthonormal 
basis c(i)  of (TxM*) n in the limit Gaussian space. In the third sum, we take the 
classical Ara'f-Shigekawa complex corresponding to the A (n) and to the Brown- 
ian bridge in the full tangent space of  M in x starting from 0 and coming back in 
0 in time 1. dx, dc, doo anticommute as can be seen in normal coordinates. If we 
work in normal coordinates, we can compute the adjoint of dr. dl*g is given by 

d * + d * + d * = - A ( O )  ~ ie(i)Fe(o-A(O) ~ ic(oF~(,) 

- ~ A(n)icos(ns)e(j)l-'cos(ns)eU)- 2A(n)isin(ns)e(j)rsin(ns)e(j ) 

- A ( O )  ~ ic(i) < ( I - d g ) c ,  ( I - d g ) c ( i ) )  

- ~" .I A(n)(cos(ns)e(j),~Srna~,s) 
[o,11 

- ~ A(n)  ( s in(ns)e( j ) ,  dYnat,~ ) • (2.20) 

It is the same type of  formula as in [JL2 ], but the normal fiat Brownian bridge 
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is more complicated here, because we choose c random too. If we put c and 7aat 
together, we have an abstract Wiener space, and dc~+do~,g can be understood in 
the formalism of Ara'i [Arl,  Ar2, ARM]. Namely, we can choose the c(i) such 
that it is an orthonormal basis for ( TM g) I-I for the norm I Icll 2. Let us recall namely 
that over M g, if we write dg as a collection of matrices of rotation of angle 0, we 
get a collection oforthogonal subbundles which are parallel over each component 
o f M  g. Modulo this d~* + d ~  appears as an Ara'i operator with an auxiliary opera- 
tor in c for the Gaussian space spanned by c and the flat Brownian bridge ~,. As 
Fermionic Fock space, we choose Ac ̂  A~ with the norm IIcll 2 and as Bosonic Fock 
space, the space L 2 associated to the limit Gaussian probability measure 
e x p ( -  II (I-dg)cl[ 2 )®dP~,x. The auxiliary operator in c is the operator which 
allows us to pass from both Hilbert structures in c. 

Moreover 

do~,gd*g + d*gd~o,g = do~,g = Na (A 2 ) .~ NF (A 2) ,  

dc,~d c,~ + d c,~dc~ - Ac,~ = NB ( c 2 ) + NF ( c 2 ) 

The number operator for bosons NB (A 2) is associated to the operator which sends 
sin(ns) to A(n)2sin(ns) and cos(ns) to A2(n)cos(ns) as well as the fermion 
number operator NF(A2). The bosonic number operators NB(c z) and the fer- 
mionic number operators NF (C 2 ) are related to the change of Hilbert structure in 
(TMg)  n. 

Therefore, d~,g +dT, g has a self-adjoint extension. Namely d~,g + A ~  can be diag- 
onalised, because it is a sum of bosonic number operators and of fermionic op- 
erators (see [Ar2 ] ). Since the A (n) do not depend on x and since the diagonali- 
sation of dg is parallel o v e r  M g, we deduce that the set of eigenvectors associated 
to different eigenvalues of d~,g and of d~,~ constitute a countable set of  finite di- 
mensional bundles over M g, which are preserved by dx,g+d*,g, dc,g+d~,g and 
doo~ + d*~,  this because these operators are anticommuting (cf. IT ] and [JL2] ). 
dx~ + d*~ appears exactly over each bundle as the de Rham operators tensorised 
by this bundle. We know that the spectrum of d ~  + d*x,g is discrete over each of 
these finite dimensional bundles, as well as dc,g + dc*g and d*g + d~,g. Moreover 
the action o f d ~  + d~*g and of doo,g + d*,g over each of these bundles is the square 
root of  the action modulo the sign of dc,g and of doo~ over each of these bundles. 
This allows us by restricting these bundles to diagonalise dt~ + d~,g and to show it 
has a self-adjoint extension. 

We can look at the action of h over the limit model, h keeps M g because g and 
h commute. Moreover, dh lifts over M g to a natural action over TM, which pre- 
serves TMg and (TMg) n. Let us remark that: 

Ildh(I-dg)cll 2= II ( I -  dg) (dh c)II 2, (2.21) 

such that the action of dh preserves the auxiliary operator which appears in A~,g 



R. L~andre, S.S. Roan /Geometry  and Physics 16 (1995) 71-98 89  

and/i~,g (since the action of dh preserves the metric of the tangent space of 7nat )- 
This shows us that dh commutes with all the limit operators given before. 

Theorem 2.1. I f  A ( n ) > I n I p, then gh = hg, 

Tr exp ( - t/Ii,gh ) < ~ ,  ( 2.22 ) 

Ind(dt,g +d~,g)h=)c(MgnM h) . (2.23) 

Proof The proof of the existence of the trace follows directly the line of [JL2], 
because h keeps the Wick product and the fermionic Fock space. Let ,7/~ be such 
a subbundle for Ac~ and/i~,g endowed with a given combination of Wick products 
in sin(ns), cos(ns), and of exterior algebra in cos(ns) and sin(ns). K denotes 
the combination of sin (ns), cos (ns) which appear in .TK: it is possible that more 
than one of each sin (ns) appear there. I K[ is the cardinal of K. The dimension 
of such a subbundle is bounded by C t rl + ~, and the action of exp ( -  t/l~,t,g) over 
each subbundle is diagonal and bounded by C exp ( - tYr A (n) 2 ). The action of 
/I x over A~, ̂  ~K is given by the Lichnerowicz formula/IK= - ½AI~Mg+ C~ + CK. C~ 
is the action of the Lichnerowicz formula for the non-tensorised de Rham oper- 
ator, and CK comes from the action of the Lichnerowicz formula over the auxil- 
iary bundle, which appears as a combination of at most I KI products of three 
types together: exterior products, symmetric tensor products and tensor prod- 
ucts. We have a probabilistic representation of the trace of the heat semi-group 
associated to AK, since over each product we take the connection product. Let r~,K 
be the parallel transport over ~K, which preserves the product, and let 

dUs,x = -½Us.Kz~l(Cr+Cl ) .  (2.24) 

We get the following representation of [Bi3, IW, Le2, Le3 ] and more precisely 
[ Bi4 ] of the trace that the heat semi-group: 

Tr exp( - tAK)h= I pt(x, hx)Et.x, hx(tr( U~,rz~.k dh) ) dx ,  (2.25) 
Mg 

where pt(x, y) is the heat kernel associated to the Brownian motion over M g and 
E,.x,h~x) the expectation for the Brownian bridge which goes from h(x)  to x in 
time t. In particular, we have a bound of the trace under the expectation in C, 

C('+t)lxl FI e x p ( - t l A ( n )  I 2) < ~ C Irl(l+t) FI exp( - t n  zp) 
K K 

= C F I  C ~+') exp( - t n  zp) <oo. 
K 

This shows that the first part of  the theorem is true. 
Let us show now that the second part of the theorem is true. The operators d~o,g, 
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dc~ dx,g anticommute or commute with h. If a section belongs to the kernel of 
dt,g+d~,g, it is therefore, by using Ara'Ps computation [Arl, Ar2], a form in x 
which does not depend on 7nat and c, almost surely. This shows us that 

Indh (dtg+ d~g) =Zh ( M  g) . (2.26) 

We apply the classical Lefschetz theorem and we find 

)(.h (Mg) = z ( M  gn mh) , (2.27) 

since h is an isometry o f M  g because g and h commute. 
Let us now motivate the introduction of these operators by the following limit 

theorem, which is analogous to the limit theorem of [JL2 ]. But before this, we 
need to understand what we mean by a limit in law, because our situation is a 
little bit more complicated than the situation encountered in [ JL2 ]. Let us recall 
that the fibre is isomorphic to A(TxM) ^Ax(H) .  But if x is close to the fixed 
point set, A(T~) ^ Ax(H) is isomorphic by means of  the parallel transport be- 
tween x and/- /x to A(Trix) nAnx(H) .  We identify the fibre close to M g with 
A (Tnx) n A~(H) and far from M g with the original fibre. We put as Hilbert space 
structure the space of  L z sections over A (Trlx) n Anx (H) and the space of  L 2 sec- 
tions over A (T~) ^ Ax(H) far from our neighbourhood. An L 2 section of  forms 
over the twisted loop space appears therefore as an L 2 random variable from the 
twisted loop space into this fixed Hilbert space. It makes sense in particular to 
speak of  the limit in law of such a random variable into this fixed Hilbert space, 
which justifies our conjecture. 

Theorem 2.2. For any fixed element of  A Og, we have in law i f  4p < 1: 

B,a~at, (2.28) 

B~ dh a--,dh at, (2.29) 

(d¢,r,g + d,*,r,g) dh B , a ~  (dt,g +d~,g) dh at, (2.30) 

A,,r,g dh B, tT---~ Al,g dh trl . (2.31 ) 

Proof. Let us begin to show first that Bdr--,at in law for any element ofAg °. This 
arises from the Bismut computation of  [Bi4]: any finite combination of  
(f(~,(t)) - f ( /77(O)  ) )/~ tends in law to (df (~ , (0) ) ,  ~'flat(t) + ( 1 - t ) c + t d g c )  
for the given limit probability Gaussian measure. The second affirmation comes 
from the fact that dh tr belongs to A ° and that B, dh g=  dh B,a. Let us remark that 
we do not need the full Bismut procedure in order to see that, because we take 
only a finite number of  terms in ( f  (y ( t ) )  - f  (/77 (0) ) ) / E. Computations similar 
to [ Le2 ] can be used. 

Let us show now that (d~,r,g+d~r,g)B~a tends in law to (dl. +dT.g)at. (We can 
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remove the term in h, this from (2.30).) We work in normal coordinates in/7?(0).  
Let us begin by the divergence part in d*,,r.g. If we take an element of  T~, n > 0, of 
the distinguished basis, it is multiplied by E, this from the rescaling of  the metric. 
We get: 

div EX(n, e(i)) =e/e2  ~ (z~ cos(ns)e(i), 8?(s)) 
I0,11 

/ .  

"~ 1~2/E2 J (S~x(n,e(i))(s), ¢~?(S) ) + counterterms. 
[0,1] 

(2.32) 

The counterterms disappear when e tends to zero, and in law we obtain at the end 
f to, t I ( cos (ns) e (i), @nat ( s ) ) ,  which is exactly the divergent term which appears 
in d*g. In the limit contribution, there is no term in fto, l](cos(ns)e(i), 
( I -dg)c  ds) =0.  The ease n < 0 is similar. For the moment, we do not see a dif- 
ference with the computation of  [ JL2 ]. 

The difference appears when we want to treat the contribution in the divergent 
part of  T °, because in this case there are two distinct behaviours. 

Let us consider first the ease of Xo(z(?(O) ), 177(0) )e(i) (177(0)), where e(i) 
is orthogonal to TM g. In this ease, the metric is rescaled, and near M g we have to 
multiply our vector by ~. We get: 

div X(0, e(i) ) =~ div z(?(O), 177(0) )e(i) (177(0)) 

"}-~'/E2 f (Zs(-Z(?(O),H?(O))e(i)(H?(O)) 
[o,11 

+z~ -1 dgz(?(O),H?(O) )e(i)(H?(O) ) ),~?(s) ) 

JI-~2/E 2 ff (S~x(o,e(i)) , O?(a)) +counter terms.  
[0,1] 

(2.33) 

In this case, the limit in law of a finite family of divergences of  this kind is 
( ( - 1 +dg)e(i) (? (0) ) ,  ( - 1 + d g ) c ) ,  which gives the divergence part of the term 
in d*,g in the limit model. 

If we work now over TM g, we have the same type of behaviour, but this goes in 
law to div e(i), because z~ has a behaviour in I-I-E 2 and because e(i)(H?(0)) 
belongs to the kernel of  - 1 + rig. This shows us in local coordinates that the di- 
vergence part of  d*,r,gB, o converges to the divergence part of  d~,g171, and this with- 
out the Bismut procedure, because in this case we have only a finite expression. 
(In fact, it is not so simple, because in the limit theorem in law, we take test 
functionals which are only continuous, and it is not easy to regularise continuous 
test functions in the non-compact case. In order to be rigorous, we cannot avoid 
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to use the Bismut procedure. See later for this. ) 
Let us now study the behaviour of d~.~Bdr. The difficulty is now that we have 

infinite expressions. If n>0 ,  we have to study the behaviour of 
(d(f(~,(t))-f(II~,(O)))/~, eX(n, e ( i ) ) ) ,  which is equal to ( d f ( 7 ( t ) ) ,  
X(n, e(i))(t)) because X(n, e ( i ) ) ( 0 ) = 0 .  This tends to (df(~, (0)) ,  
f [O,t] cos (ns) dse(i) ), which is exactly the derivative of (df(~,(0)) ,  f to.tlO)'nat ( s ) )  
in the direction cos nse(i) of the Cameron-Martin space H of the Brownian 
bridge. The case n < 0 is similar. If we take a derivative in the direction of (TMg) H, 
//~, (0) does not change asymptotically in E under the action of such a vector field. 
The vector field is rescaled by E itself, because we rescale the metric in this direc- 
tion. So we find that in law ( d ( f ( y ( t ) ) ) - f ( / / ~ , ( 0 ) ) ,  X(O, e(i))) tends to 
( d f ( y ( 0 ) ) ,  t( - 1 +dg)e(i) ), which is exactly the derivative of ( d f ( 7 ( 0 ) ) ,  
t( - 1 + d g ) c )  in the direction e(i). Let us now study the behaviour in law of the 
derivatives in the direction of TM g. We get, if e( i )  belongs to TM g, 

( d 0c(~,(t) ) -f(II~,(O) ) )/E, X(O, e(i) ) ) 

= ( d ( f ( 7 ( t ) )  - f (7 (O)  ) ), X(O, e(i) ) )/~ 

+ (d ( f (7 (O) )  - f ( / / 7 (O)  ), X(O, e(i)) )/E. (2.34) 

Since we work in normal coordinates, and since r~ (~, ( 0 ) , / / ~  (0)  ) ~ I +  ~ 2 when E 
tends to O, the derivative of  the second term disappears almost completely when 
E goes to O, because d(7(O), /L'(O) ) ~ E when ~ goes to O: it remains in the limit 
(Fe¢i) df(7(O) ), c ) .  Let us treat the first term. But it is in the Stratonovitch sense: 

(d ~ (df(~(s)),d,(s)),X(O,e(i)))/~ 
[O,t] 

= f (Fx(o,~(o)(,) df(~'(s)),d~'(s))/e 
[O,tl 

+ ~ (df(~,(s)),  zs(-T(~,(O),llT(O))e(i)(lI),(O)) 
[o,t] 

+zi  -l dg ~(~,(0), H(~,(0) )e(i) (//~,(0)) ) / e .  (2.35) 

The second term tends to 0 because ri -~ d g = I +  E 2 in law and at the end we see 
that: 

( d  Or(~'(t) ) -f(Ily(O) ), X(O, e( i) ) )/~ 

~ (r~(o df(lly(O)),t~Tflat,s+(-l+dg)cds)+(re(odf(IIT(O)),c). 
[O,t] 

(2.36) 
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Let us remark that the simplifications which appear because we use local nor- 
mal coordinates over//9 '(0) (for instance z,,~ 1 + ~2) do in general not appear in 
each part of  the operator but only globally. For instance, the derivatives of  the 
distinguished vector fields cancel when e tends to 0 because we use that normal 
coordinate system in//9 '(0);  without this the computation should be more com- 
plicated. The difficulty we have to overcome is that we get in fact an infinite sum. 
In order to solve that, we will use the Bismut procedure as given in [Bi2, Bi4] 
and not in [ Le 1 ], because in this case some smoothness assumption is necessary 
about the auxiliary functional of  the Brownian bridge which is considered. Let us 
consider the collection of 

(d f (9 ' ( t ) ) , z t  ~ cos( ns) ds e(j) ) , ( df(9'( t) ), zt ~ sin( ns) ds e(j) ) . 
[0,t] [0,t] 

It is a random element @, ofL2(N).  We have to show that for all bounded contin- 
uous functionals F from L2(N) into ~, the expectation of F(qO,) tends to the 
expectation o f F ( q 0 .  We use the Bismut fact that: 

~.(F(@,(9')  ) ) 

= # (FO(x ,  ~9'nat +E( ( 1 - s ) c + d g s c )  + ~ v2(Eg', c, x)  ) ) +o(~  z ) . 
(2.37) 

In order to get v 2, we look at the equation 

dus = ~_, X~( us) (Ed?s,nat +~(  1 - d g ) c  ds + Ev z ds ) , (2.38) 

where the X~ are the canonical vector fields over the frame bundle over M. We 
suppose that Us starts from/-/u (0) =9'(0) +~c, 9'(0) belonging to M g and c being 
in TM g, this expression being written in a tubular neighbourhood. We choose v 2 
such that 9' ( 1 ) =/-/u 1 is equal to 9' (0) + ~ dg c. We start from 9' (0) + ~c, because the 
heat kernel p,2(x, gx) does not tend to zero when x has a behaviour in 9'(0) + Ec 
(see [ Bi4 ] for more details). The key fact is the following: generally for a given 
e, we cannot find a v z such that 9' ( 1 ) = 9' (0) + ~ dg c, but it is asymptotically true, 
and this uniquely (see [ Le 1 ] for a non-geometrical approach ). This explains the 
error term in (2.37), which is explained as well by the contribution of  the Jaco- 
bian which appears in the implicit function theorem which tends to 1 when E goes 
to 0. The last difficulty that remains to explain is that there is a zt which is not a 
continuous functional ofg'. But this is overcome because zt appears in (2.38). (It 
works too if we take a finite number of stochastic integrals with different 
integrands. ) 

This type of argument works too (but in a simpler way, because in this case 
there is a finite sum) for the non-divergent part of  d~*,.gB~r. In conclusion, we 
have shown that in law (d,,r, + d~r,g)B, a tends to (dt,g + d~g) at. 

Let us now show that . 2 ( d~,r,g + d,,r,) B, a= A,,,,tr converges in law to dt,trt. 
(a) Let us begin by the simplest contribution, that means d,*,,gd,*,r,gB, a. It is a 
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finite sum which appears. Moreover, since two interior products anticommute 
and since the derivatives in the limit probability space over ;, (0) in M g commute, 
the limit in law of this expression is nothing else than d**d*~at. 

(b) Let us look at the contribution of d~.r,gd~,r,.B~tr. There is a doubly infinite 
sum in this expression. Since we look in normal coordinates, we see that the ap- 
parently most difficult part to handle in this expression is 

A ( m ) A ( n ) ( d (  dB~Fl, EX(n,e(i) ) >, EX(m,e(j) ) > 
n#O,m~O,id 

x X ( m ,  e(j) ) ^ X( n, e( i) ) ^ X(I)  . 

The contribution with n= m, e( i )=e(j)  cancels. We have only to consider the 
family of 

A(m)A(n)e2(  ( d (  dB~FI, X(n, e( i) ) ), X(m, e(j) ) ) 

- ( d ( d B ,  F1, X(m, e(j) ), X(n, e(i) ) ) ) ,  

which belongs to L2(tq). The only difficulty is when we derive twice the same 
(f(~, (t ( i ) )  ) - f  (H7 (0) ) )/~; in the other case, there is an automatic cancellation. 
We use again the Bismut procedure, but we have to use the formula (2.7). A 
infinite number of stochastic integrals with different integrands appear. We over- 
come this difficulty by writing Xs = TJ-/s and by integrating by parts in (2.7). The 
boring terms are of the type ztf[o,/] K~t/'s ds where a fixed Ks (independent of Hs) 
appears. Ks is a Stratonovitch integral in the curvature tensor and rs: we can apply 
the Bismut procedure to Ks, which allows to conclude. Let us remark that the fact 
that the second derivative off(r(t~) ) -f(/-/r(0) )/~ along ~X(n, e(i) ) and ~X(m, 
e(j)  ) cancels at the limit, describes the fact that the derivative of ( d f ( 7 ( 0 ) ) ,  
Yf~at.t + ( 1 - t) c + t dg c ) is deterministic at the limit in the direction of the tangent 
space of the Brownian bridge. 

In this case, the computation was easier because we divide each 
f(~,(t(i) ) ) -f(II~,(O) ) by E and we multiply each X(n, e(i) ) by E. This simpli- 
fication does not appear when we have to multiply only one X(n, e ( i ) )  by ~. We 
look at the convergence in law of the series in L2(Uq ), 

A(n)~{ ( d(  dB, Fz, X(O, e(i) ) ), X(n, e(j) ) ) 

- ( d ( d B ,  Fl, X(n, e(j)) ), X(O, e(i)) ) } ,  

where e(i) belongs to TM g, n#O, or e(j)  belonging to (TMg) rI, n=0.  Only the 
contribution of the second derivative of the same ( f (y( t ( i ) )  ) - f ( I Iy (O)  ) )/~ 
plays a role. We have for n # 0, 

( d(  d(f(y(t( i)  ) - f ( 7 ( 0 )  ) ), X(0, e(i) ) ), X(n, e(j) ) )A(n)  

= ( d  (df(~,(t)) ,  X(0, e(i) ) ( t ) ) ,  X(n, e(j) ) ) A ( n ) ,  (2.39) 



R. Lbandre, S.S. Roan /Geometry and Physics 16 (1995) 71-98 95 

( d ( d ( f ( y ( t ( i ) )  - f ( / - /y(0)  ) ), X(n, e(j) ) ), X(O, e(i) ) )A(n)  

= ( (d f (y ( t ( i ) )  ), X(n, e(j) ) ( t ) ) ,  X(O, e(i) ) )A (n ) .  (2.40) 

We have to take the derivative Fx~o,e~,) )X( n, e(j) ) ( t ) and FX<,.ev) )X( O, e( i ) ) ( t ). 
These two sequences tend separately in law to 0, because we work in the normal 
coordinate system. Let us repeat that this simplification appears separately be- 
cause we use normal coordinates over each contributing term of the operator and 
appears globally over the operator, which is intrinsically defined. It remains only 
to study the contribution of the sequence: 

A(n) ((FZf(y(t)),  X(O, e(i) ) (t), X(n, cO') ) (t) ) 

- (l"2f(~,(t)), X(n, e(j) ) (t), X(O, e(i) ) ( t ))  ) ,  (2.41) 

which in Lz(N) tends in law to 0 because we work in normal coordinates. We 
have shown that d,,r,gd¢,r,gn, a tends in law to dx~l~at. 

(c) We consider the case of d,,,,gd,*,r~B,a. Since d,*,rgB, tr is a finite sum, that 
term can be treated as the contribution of d,,,B, tr. The first difference is that we 
have to take derivatives of the parallel transport, and therefore to use (2.7). We 
also have to take the derivative of the divergence part. The only difficulty in this 
case is to take the derivative of ( 1/E )fro.l] ( z~ ~/' (n) (s), @(s) ).  It is in fact also 
a Stratonovitch integral. We have then, if m ¢ O: 

(1 f ( z~H' (n) (s ) ,dy(s ) ) ,EX(m,e( i ) ) )  
[o,l] 

= ~ ( z sH ' (n ) ( s ) , z ,H ' (m) ( s ) )d s  
[0Al 

+ ~ Its ~ rylR(dyu, X(n ,e( i ) ) (u)zuH'(n)(s) ,dy(s)  I ,  
[oA ] [o,s] 

(2.42) 

which tends in law to Jt0,11 ( H '  (n) (s), H' (m)  ( s ) )  ds, therefore the derivative 
of the divergence fto, lj ( H '  (n) (s), aYnat(s) ) in the other direction H(m) (s). 
The fact that the second term tends in law to zero does not come from the fact 
that we use normal coordinates, but we have to use this for the derivatives of the 
other parts of  the divergence. 

(d) The most complicated term to treat is d,*r,gd~,r,gB~a because the sum in 
d,.,~B,a is infinite, among which is the term: 

A(n)2~2 ( d( dB, F,, X(n, e( i) ) ), X(n, e( i) ) ) 
n~O,i 

- C  ~ A(n)Z( dB, Fi, X(n, e(i) ) ) div X(n, e(i) ) .  (2.43) 
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The first term does not pose any problem, because each term of the series is in L 2 

bounded by CA (n)2/n 2 and since 2p < 1. For the second, the most complicated 
term is 

D(~) = l  ~ A(n)2(df(7(t)),ztH(n)(t)e(i)) 
nv~O,e(i) 

X ~ (zsH'(n)(s)e(i),@(s)). (2.44) 
[o,11 

The deterministic series A(n)2Hn(t) is in L2(Cq) because 4 p < l .  Let 
~t (s) = ~. A ( n ) 2H ( n ) (t) H'  ( n ) (s). It is an element deterministic of L 2 [ 0, 1 ], 
which does not depend on ¢. We recognise in (2.45) 

1 (df(,(t)),zt ~ (z,#t(s)e(i),~5,(s))) (2.45) D(¢) = -~ X 
[o,11 

Since ¢~(s) is deterministic, this converges in law to E ( d f ( 7 ( 0 ) ) ,  
ftO.ll (¢'t (s)e(i), @(s) ) ). Since ~;(s) is deterministic, this converges in law to 
~. (df(~,(0) ), f t o, l I ( ¢t't (s), ~7nat ( s ) ) ,  which is the divergent part of the operator 
associated to the auxiliary operator which to H '  (n) associates A (n) 2H' (n) over 
the flat Brownian bridge. 

Remark. We separate in order to give a nice exposure of the convergence in law 
of different parts of the considered expression, although it is not completely cor- 
rect. But the convergence in law for the whole expression together is ensured. 

Remark. Theorem 2.2 justifies the name of limit model, although we omit to speak 
about the difficulties of this limit procedure: it is perhaps possible to define an- 
other set of functionals such that the Bismut dilatation gives another limit 
operator. 
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